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Abstract

Although osteoarthritis (OA) is the most prevalent degenerative joint disease, there is no

effective disease-modifying therapy. We report an empty self-assembled hyaluronic acid

nanoparticle (HA-NP) as a potential therapeutic agent for OA treatment. In mouse

primary articular chondrocytes, HA-NPs blocked the receptor-mediated cellular uptake of

free low-molecular-weight HA, and the cellular uptake of HA-NPs increased by ectopic

expression of CD44, using an adenoviral delivery system (Ad-Cd44). HA-NP showed in

vitro resistance to digestion with hyaluronidase and in vivo long-term retention ability in

knee joint, compared with free high-molecular-weight (HMW) HA. CD44 expression

increased in the damaged articular cartilage of patients and mice with OA. Ad-Cd44

infection and IL-1β treatment induced in vitro phenotypes of OA by enhancing catabolic

gene expression in primary articular chondrocytes, and these effects were attenuated by

HA-NP, but not HMW HA. Both Cd44 deficiency and intra-articular injection of HA-NP

protected joint cartilage against OA development in the OA mouse model. NF-κB was

found to mediate CD44-induced catabolic factor expression and HA-NP inhibited CD44-

induced NF-κB activation in chondrocytes. Our results identify an empty HA-NP as a

potential therapeutic agent targeting CD44 for OA treatment, and the CD44-NF-κB-

catabolic gene axis as an underlying mechanism of destructive cartilage disorders.
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Introduction

Osteoarthritis (OA) is the most common degenerative joint disease and cause of

disability, with a large socioeconomic cost; however, there is currently a lack of effective

disease-modifying therapy for OA [1]. OA is characterized by progressive cartilage

destruction, thickening of the subchondral bone plate, and variable degrees of

inflammation in the synovium, leading to joint stiffness, chronic pain, and functional

disturbance [2,3]. A major component of articular cartilage in the joint is a dense

extracellular matrix (ECM) including collagens and glycosaminoglycans, especially

hyaluronic acids (HAs); OA manifestations are caused by the upregulation of ECM-

degrading enzymes [4]. These pathogenic factors are first triggered by mechanical stress,

which then alters biochemical pathways in chondrocytes, resulting in ECM degradation

and inflammation through matrix metalloproteinases (MMPs) and cyclooxygenase 2

(COX2) expression, respectively [5]. Among MMPs, MMP3 and MMP13 are known to play

crucial roles in OA pathogenesis. COX2 is primarily involved in inflammation, eventually

leading to MMP activation and ECM degradation [6].

Ideal OA therapy involves blocking pathogenic factors prior to the development of severe

OA [7]. Conventional drugs have been developed to target these pathways, including

several classes of cytokine receptor antagonists and small anti-inflammatory molecules

that neutralize inflammatory cytokines or block pathogenic receptors [8]. Although such

drugs relieve the symptoms and delay the advancement of deterioration, no current

treatments can effectively restore the damaged cartilage. It has been also reported that

interactions between the ECM and chondrocytes, mediated by matrix receptors,

including integrin and CD44, respectively, are responsible for maintaining cartilage

homeostasis. Altered ECM-chondrocyte interaction due to ECM decomposition under

pathological conditions, including inflammation and tissue injury, plays a critical role in

destruction and progressive loss of cartilage by triggering the expression of MMP3,

MMP13, and COX2 [[9], [10], [11]]. These catabolic factors promote cartilage destruction

and release of fragmented ECM molecules, such as fragmented fibronectin, which further

triggers catabolic gene expression in chondrocytes [9,11]. Therefore, the inhibition of

fragmented ECM molecule-chondrocyte interactions might be a potential therapeutic

strategy for the treatment of OA.

Intra-articular (i.a.) injection of high-molecular-weight (HMW, MW > 1000 kDa) HAs, one

of the currently available treatment options for OA, can relieve pain and have disease-

modifying effects in the knee joint of mild OA [12]. However, there are conflicting results

regarding their efficacy and several side effects, such as local inflammation, likely due to

the degradation of HMW HAs into fragmented low-molecular-weight (LMW,

MW < 500 kDa) HA molecules by hyaluronidases (HYALs) [13]. Indeed, fragmented LMW

HA molecules in the knee joint are known to be responsible for increased catabolic gene

expression as well as pro-inflammatory cytokine production [9,10,14,15].

Self-assembled HA nanoparticles (HA-NPs) have been extensively investigated as target-

specific and long-acting drug carriers to actively target pathological sites that express HA

receptors, particularly CD44 [16,17,18]. Recent studies, including ours, have identified a

HA-NP as a potential therapeutic agent for the treatment of obesity and related

metabolic disorders, including type 2 diabetes (T2D) and atherosclerosis [[19], [20], [21]].

Here, we demonstrated that, apart from its role as a drug carrier, an empty HA-NP

without any drug has therapeutic potential for the treatment of OA by interfering with

fragmented LMW HA-CD44 interaction as well as the underlying mechanism involved in

the pathogenesis and progression of OA using in vitro and in vivo models (Fig. 1A).
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Synthesis and characterization of HA-NPs

Sodium hyaluronate (MW = 10 kDa) was purchased from Lifecore Biomedical (Chaska,

MN, USA). Ethylenediamine, 5β-cholanic acid (CA), N-hydroxysuccinimide (NHS), and 1-

ethyl-3(3-(dimethylamino)propyl)-carbodiimide·hydrochloride (EDC·HCl) were obtained

from Sigma-Aldrich (St. Louis, MO, USA). An amphiphilic HA conjugate bearing 3.35 CAs

per 100 sugar residues of HA was synthesized in the presence of EDC and NHS, as

previously reported [19,20,22]. The chemical structure of the conjugate was…

Characterization of self-assembled HA-NPs

The therapeutic effects of HA-NP were evaluated using in vitro and in vivo OA model

systems. We first synthesized amphiphilic HA conjugates by chemical conjugations of

free LMW HA backbone (MW = 10 kDa) with hydrophobic 5β-cholanic acid (CA), as

previously reported [19,20,22]. Due to their amphiphilic nature, the conjugates self-

assemble into NPs via hydrophobic interactions among CAs in aqueous conditions, in

which CAs and HAs compose the hydrophobic core for self-assembly and the

hydrophilic…

Conclusions

HMW HAs are the most widely distributed native forms of HAs in the articular joint and

are responsible for its structure and the normal functions of synovial fluid. Indeed, i.a.

injection of sodium hyaluronate, which is an injectable HMW HA that is approved by the

FDA, has disease-modifying effects in mild OA of the knee [12]. However, HMW HAs are

easily decomposed by degrading enzymes present in OA synovial fluid. Here, we

identified the protective effects of HA-NP against CD44-mediated…
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