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Curcumin slows osteoarthritis progression
and relieves osteoarthritis-associated pain
symptoms in a post-traumatic osteoarthritis
mouse model
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Abstract

Background: Curcumin has been shown to have chondroprotective potential in vitro. However, its effect on disease and
symptom modification in osteoarthritis (OA) is largely unknown. This study aimed to determine whether curcumin could
slow progression of OA and relieve OA-related pain in a mouse model of destabilization of the medial meniscus (DMM).

Methods: Expression of selected cartilage degradative-associated genes was evaluated in human primary chondrocytes
treated with curcumin and curcumin nanoparticles and assayed by real-time PCR. The mice subjected to DMM
surgery were orally administered curcumin or topically administered curcumin nanoparticles for 8 weeks. Cartilage
integrity was evaluated by Safranin O staining and Osteoarthritis Research Society International (OARSI) score, and by
immunohistochemical staining of cleaved aggrecan and type II collagen, and levels of matrix metalloproteinase
(MMP)-13 and ADAMTS5. Synovitis and subchondral bone thickness were scored based on histologic images.
OA-associated pain and symptoms were evaluated by von Frey assay, and locomotor behavior including distance
traveled and rearing.

Results: Both curcumin and nanoparticles encapsulating curcumin suppressed mRNA expression of pro-inflammatory
mediators IL-1β and TNF-α, MMPs 1, 3, and 13, and aggrecanase ADAMTS5, and upregulated the chondroprotective
transcriptional regulator CITED2, in primary cultured chondrocytes in the absence or presence of IL-1β. Oral administration
of curcumin significantly reduced OA disease progression, but showed no significant effect on OA pain relief. Curcumin
was detected in the infrapatellar fat pad (IPFP) following topical administration of curcumin nanoparticles on the skin of
the injured mouse knee. Compared to vehicle-treated controls, topical treatment led to: (1) reduced proteoglycan loss
and cartilage erosion and lower OARSI scores, (2) reduced synovitis and subchondral plate thickness, (3) reduced
immunochemical staining of type II collagen and aggrecan cleavage epitopes and numbers of chondrocytes positive
for MMP-13 and ADAMTS5 in the articular cartilage, and (4) reduced expression of adipokines and pro-inflammatory
mediators in the IPFP. In contrast to oral curcumin, topical application of curcumin nanoparticles relieved OA-related
pain as indicated by reduced tactile hypersensitivity and improved locomotor behavior.

Conclusion: This study provides the first evidence that curcumin significantly slows OA disease progression and exerts
a palliative effect in an OA mouse model.
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Background
Osteoarthritis (OA) is a progressive and degenerative dis-
ease of the articular joints involving the articular cartilage,
synovium, and subchondral bone, and is a leading cause of
pain and disability in the adult population [1]. Despite the
high prevalence of OA, there is currently no cure or effect-
ive treatment that halts or reverses disease progression [2].
While current pharmacologic treatments such as analge-
sics and nonsteroidal anti-inflammatory drugs (NSAIDs)
provide symptomatic relief, such as relieving pain, they do
not exert a clear clinical effect on OA disease prevention
or modification [3]. In most cases, long-term use of these
treatments has been associated with substantial gastro-
intestinal, renal, and cardiovascular side effects [3]. There
is a clear and urgent need for new therapeutic strategies
that are effective and safe for OA treatment.
Curcumin, the principal curcuminoid and the most ac-

tive component in turmeric, is a biologically active
phytochemical [4, 5]. Evidence from several recent in
vitro studies suggests that curcumin may exert a chon-
droprotective effect through actions such as anti-
inflammatory, anti-oxidative stress, and anti-catabolic
activity that are critical for mitigating OA disease patho-
genesis and symptoms. For example, curcumin has been
shown to mitigate the inflammatory process by decreasing
synthesis of inflammatory mediators such as interleukin
(IL)-1β, tumor necrosis factor (TNF)-α, IL-6, IL-8, prosta-
glandin E2 (PGE2), and cyclooxygenase-2 (COX-2) [6–8],
inhibit IL-1β-induced extracellular matrix degradation [9]
and chondrocyte apoptosis [10, 11], and mitigate the over-
production of reactive oxygen and nitrogen species [12,
13]. Moreover, curcumin, by inhibiting the activator pro-
tein 1 (AP-1) pathway [14] and nuclear factor kappa B
(NF-kB) activation [14–16], suppresses the gene expres-
sion of a number of matrix metalloproteinases (MMPs),
which play critical roles in the breakdown of the cartilage
extracellular matrix [7, 14–17].
Despite the recent progress, the effect of curcumin on

OA disease progression and pain relief is largely un-
known. Moon et al. showed that following intraperito-
neal injection of curcumin every other day for 2 weeks,
expression of TNF-α and IL-1β in the ankle joint, and
serum immunoglobulin concentrations in mice with
collagen-induced arthritis were downregulated compared
with non-curcumin-treated mice [18], suggesting curcu-
min may be beneficial in rheumatoid arthritis. Further-
more, Colitti et al. found that oral delivery of curcumin
in canines with spontaneous OA leads to decreased IL-
18 and TNF-α production, and inhibition of the inflam-
matory transcription factor NF-kB in white blood cells
[19]. The study suggests a potential anti-inflammatory
effect of curcumin on the joints in OA.
While several studies suggest oral administration of cur-

cumin may exert an effect in relieving OA-related pain

[20–24], topical application may provide another patient-
friendly method of treatment. Importantly, it may increase
the bioavailability of curcumin at the disease site for OA
treatment. In this study, we aim to determine the efficacies
of curcumin through oral delivery and custom-made
nanoparticles through topical administration in OA
disease and symptom modification using a mouse model
of post-traumatic OA.

Methods
Cell culture and curcumin treatment in vitro
All human studies were approved by the Albert Einstein
College of Medicine Institutional Review Board. Human
primary chondrocytes derived from patients undergoing
joint replacement surgery (women aged 58–69 years, n = 3)
were cultured in DMEM/F12 with 10 % fetal bovine serum
[25]. Prior to curcumin treatment, cells were cultured in the
DMEM/F12 with 1 % fetal bovine serum overnight. In some
experiments, chondrocytes were incubated with IL-1β
(10 ng/ml, Sigma) 30 minutes prior to incubation with cur-
cumin (100 μM, Sigma) or curcumin (100 μM) encapsulated
within nanoparticles for 6 hours. Cells were then lysed and
RNA isolated for reverse transcription-quantitative polymer-
ase chain reaction (real-time-PCR) [26]. The dose (100 μM)
and treatment duration (6 hours) were chosen based on
assays for dose-response (0–200 μM) and time course (0–48
hours) of human primary chondrocytes treated with non-
encapsulated curcumin (Additional file 1: Figure S1).

Preparation of curcumin nanoparticles
Curcumin nanoparticles were prepared using a variation
of a nanoparticle platform that was developed for topical
and systemic delivery of nitric oxide [27–29] in three
steps as follows [30]: (1) hydrolysis of tetra-methyl-
orthosilicate (TMOS). Hydrolyzed TMOS is prepared by
sonicating at ice temperature, a mixture of 3 ml TMOS
and 600 μl 1 mM HCl in a small glass bottle with rubber
stopper. Upon sonication the initial biphasic solution
turns into a monophasic solution. The monophasic solu-
tion is stored at 4 °C for an hour to help eliminate
methanol, a byproduct of TMOS hydrolysis (residual
methanol is further eliminated during the lyophilization
process); (2) polymerization. The following ingredients
are added sequentially to a 50-ml conical tube, which is
inverted (to facilitate mixing) after each addition of an
ingredient: 24 ml of PBS 50 mM pH 7.5, 1.5 ml PEG
400, 1.5 ml chitosan (5 mg/ml) at pH 6 in acetic acid,
4 ml of 5 mg/ml curcumin (Sigma) dissolved in dimethyl
sulfoxide (DMSO) and finally 3 ml hydrolyzed TMOS.
After all the ingredients are mixed a homogeneous gel is
formed in approximately 30 minutes; (3) lyophilization
and ball-milling. The wet sol-gel containing the curcu-
min is freeze-dried overnight. The resulting dry course
powder is then ball-milled and stored in a sealed vial for
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subsequent use for the experiments. A very similar
version of this platform has been used to treat topical
infections and accelerate wound healing [31].

Induction of osteoarthritis in mice and curcumin
treatment
All animal studies were approved by the Albert Einstein
College of Medicine Institutional Animal Care and Use
Committee. Destabilization of the medial meniscus
(DMM) was established in adult C57BL/6 male mice
(male, 5–6 months of age) by surgically transecting the
medial meniscotibial ligament (MMTL) in the right hind
limb [32]. Briefly, the joint capsule immediately medial
to the patellar tendon was incised, followed by blunt
dissection of the infrapatellar fat pad, to provide
visualization of the MMTL of the medial meniscus. The
MMTL was transected, leading to destabilization of the
medial meniscus (DMM). In the sham surgery, the
MMTL was visualized but not transected. The joint cap-
sule and skin were closed by suture. Immediately after
the DMM surgery, mice were subjected to (1) oral ad-
ministration of 50 mg/kg curcumin (Sigma) dissolved in
corn oil or vehicle (corn oil only) administered via oral
gavage (n = 8/group), or (2) topical application of curcu-
min nanoparticles (0.07 mg of 10 μg curcumin/1 mg
nanoparticles) or vehicle control (coconut oil) on the
skin, within a 5-mm2 area directly above the DMM-
operated knee (n = 5/group), once daily for 8 weeks.

Safranin O staining, OARSI score, and histologic evaluation
of synovium and subchondral bone
Animals were sacrificed at 8 weeks following curcumin
treatment. The hind limbs were fixed in formalin, decalci-
fied in formic acid, embedded in paraffin, and sectioned
for histological and immunohistochemical analysis.
afranin O-fast green staining was used to visualize proteo-
glycans in the articular cartilage. The severity of OA was
evaluated in the medial compartment of the knee with at
least five sections for each mouse using the Osteoarthritis
Research Society International (OARSI) scoring system
[33]. The synovial pathology (i.e., synovitis) was analyzed
on Safranin O stained sections from which the OARSI
scores were obtained. The degree of synovitis was scored
using a scoring system that measured the thickness of the
synovial lining cell layer on a scale of 0–3 (0 = 1–2 cells,
1 = 2–4 cells, 2 = 4–9 cells and 3 = 10 or more cells) and
cellular density in the synovial stroma on a scale of 0–3
(0 = normal cellularity, 1 = slightly increased cellularity,
2 =moderately increased cellularity and 3 = greatly in-
creased cellularity). Synovitis scores obtained from all four
quadrants (medial tibia, medial femur, lateral tibia, and
lateral femur) for both of the above parameters were
averaged separately and then the sum of averages from
both parameters was used for analysis (on a scale of 0–6)

[34]. The thickness of the medial subchondral bone plate
(region between the osteochondral junction and marrow
space on the medial side of the tibial plateau, in μm) was
measured using AxioVision software using Safranin O
stained sections from which the OARSI and synovitis
scores were obtained [35].

Immunohistochemical analysis
Sections were incubated overnight at 4 °C with anti-
bodies against cleaved aggrecan (NITEGE, Ibex) and
cleaved type II collagen (Col2-3/4 M, Ibex), matrix me-
talloproteinase (MMP)-13 (Abcam), and a disintegrin
and metalloproteinase with thrombospondin motifs
(ADAMTS)5 (Abcam) followed by incubation with
anti-mouse or anti-rabbit secondary antibody (Biocare
Medical) and visualization with 3,3-diaminobenzidine
(DAB) chromagen (Vector Laboratories). Negative con-
trols were stained with irrelevant isotype-matched anti-
bodies (Biocare Medical). Immunostaining intensity for
type II collagen or aggrecan cleavage epitopes was quan-
tified by determining the “reciprocal intensity” of the
stained articular cartilage matrix; briefly, the light inten-
sity value of six random locations within all three zones
from the posterior to anterior direction of the femoral
and tibial condyles of three sections per mouse was
measured using the color picker in Adobe Photoshop
[36, 37]. Percentages of positive MMP-13 and ADAMTS5
chondrocytes were determined by counting the number of
immunostained cells and dividing by the total number of
chondrocytes visualized by a hematoxylin counterstain
(Vector Laboratories).

In vivo localization of topically applied curcumin
Curcumin nanoparticles (0.07 mg of 10 μg curcumin/
1 mg nanoparticles dissolved in coconut oil) or vehicle
control (coconut oil) were topically applied on the right
knee of adult C57BL/6 mice (male, 5–6 months). At 3, 6,
and 24 hours after treatment (n = 3/group), the animals
were sacrificed and the hind limbs were fixed in formalin,
decalcified in formic acid, embedded in paraffin and
sectioned for histological analysis. Sections (5-μm) were
stained with hematoxylin and eosin (H&E), and imaged
with confocal microscopy to localize the curcumin parti-
cles within the articular joint. In a separate group of
animals, mice were sacrificed 3 hours after topical applica-
tion of curcumin nanoparticles or vehicle control (n = 3/
group). The IPFP from the right knee was dissected and
flash frozen. RNA was isolated for real-time PCR.

von Frey testing
Mice were acclimated for 30 minutes in individual cham-
bers on top of a wire grid platform prior to von Frey test-
ing. The plantar surface of the hind paw was stimulated
with ascending force intensities of von Frey filaments
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(Stoelting) to determine tactile sensitivity. A positive re-
sponse was defined as a rapid withdrawal of the hind paw
when the stimulus was applied, and the number of posi-
tive responses for each stimulus was recorded. Tactile
threshold was defined as a withdrawal response in 5 out
of 10 trials to a given stimulus intensity [37]. This thresh-
old was calculated once per animal.

Pain and OA-related behavioral tests
As we and others previously described, mice were accli-
mated to the test room for 30 minutes before open field
testing [37, 38]. Mice were placed in the center of individ-
ual plexiglass square chambers (45 cm× 45 cm) and
allowed to freely explore the chamber for the duration of
the 6-minute test session. The movements of the mice were
recorded with a video camera. Upon completion of the test,
which was performed once per animal, each mouse was
returned to its home cage. Two observers blinded to treat-
ment group assignments manually traced mouse move-
ments to calculate the distance (in cm) that the mouse
traveled within the cage in 6 minutes (distance traveled),
and recorded the number of times each mouse reared
(standing on its hind limbs) within 6 minutes (rearing) [38].

Real-time PCR
Total RNA was isolated with an RNeasy kit (Qiagen)
and cDNA was synthesized using the iScript Reverse

Transcriptase kit (Bio-Rad). SYBR Green real-time PCR
(Bio-Rad) was performed in duplicate for each sample to
determine relative gene expression using Glyceralde-
hyde-3-phosphate dehydrogenase (GAPDH) as a house-
keeping control with the 2-ΔΔCt method [26, 37].

Statistical analysis
Results are expressed as mean ± SD. Significance was de-
termined using Student’s t test or one-way analysis of
variance (ANOVA) and Tukey’s multiple comparison
test with a significance level of p < 0.05 (GraphPad).

Results
Gene expression profile change favors chondroprotection
in curcumin-treated human chondrocytes in vitro
We first validated the chondroprotective potential of
curcumin by gene expression profile analysis in chon-
drocytes in vitro. Consistent with previous studies [7,
14–17], human primary chondrocytes, in the absence
and presence of IL-1β, and treated with curcumin,
exhibited significantly reduced mRNA levels of proteo-
lytic enzymes MMP-1, MMP-3, and MMP-13, and pro-
inflammatory cytokines IL-1β and TNF-α (p < 0.05)
(Fig. 1). Interestingly, as shown for the first time, curcu-
min significantly reduced expression of aggrecanase
ADAMTS5 and increased expression of CITED2 (Cbp/
p300 Interacting Transactivator with ED-rich tail 2),

Fig. 1 Chondrocytes treated with curcumin exhibits a gene expression profile that is favorable for chondroprotection. Human primary chondrocytes
treated with curcumin for 6 hours exhibited reduced mRNA levels of matrix metalloproteinase (MMP)-1, MMP-3, MMP-13, a disintegrin and
metalloproteinase with thrombospondin motifs (ADAMTS)5, IL-1β, TNF-α, and increased CITED2 compared to vehicle-treated cells, in the absence (a)
and presence (b) of IL-1β, while expression of collagen 2a1 (Col2a1) and aggrecan (Acan) remained unchanged. *P < 0.05, t test, n = 3/group
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MMP-repressing transcriptional regulator (p < 0.05)
(Fig. 1). No effects of curcumin on expression of ana-
bolic genes collagen 2a1 and aggrecan were observed
(p > 0.05) (Fig. 1).

Oral delivery of curcumin slows disease progression but
does not significantly affect OA-related symptoms in mice
with DMM
We next determined the efficacy of curcumin on DMM-
induced OA through oral administration by evaluating the
structural integrity of the articular cartilage using micros-
copy following Safranin O staining and OARSI evaluation.
Eight weeks after DMM, the articular cartilage in the limb
with DMM in the vehicle-treated mice exhibited moderate
pathological osteoarthritic changes characterized by
Safranin O loss, cartilage fibrillation, and cartilage erosion
(Fig. 2a), with an OARSI score of 4.0 ± 0.5. (Fig. 2b). In
contrast, the cartilage in the limb with DMM in
curcumin-treated mice exhibited less Safranin O loss and
cartilage fibrillation (Fig. 2a) with a significantly lower
OARSI score (2.4 ± 0.42) compared to that in vehicle-
treated controls (p < 0.05, Fig. 2b). Curcumin treatment
also significantly reduced synovitis (Fig. 2c) and subchon-
dral plate thickness (Fig. 2d) compared to vehicle controls
(p < 0.05 for both). However, oral administration of curcu-
min had no significant effect on mitigating OA-related

pain, as evaluated by von Frey testing, distance traveled
and hind limb rearing (not shown).

Curcumin nanoparticles exert an anti-catabolic and
anti-inflammatory effect in human chondrocytes in vitro
While oral administration of non-encapsulated curcumin
exhibited significant efficacy in slowing the progression
of OA, its therapeutic efficacy may be restricted by its
relatively poor oral bioavailability [39]. We therefore
developed curcumin nanoparticles using a novel polymeric
nanoparticle carrier [30]. To test whether nanoparticles
encapsulating curcumin affect the chondroprotective
potential of curcumin, we compared the gene expression
profile in primary cultured human chondrocytes in the ab-
sence or presence of IL-1β and treated with curcumin
nanoparticles or vehicle control. Curcumin nanoparticles
significantly reduced mRNA levels of MMP-1, MMP-3,
MMP-13, ADAMTS5, IL-1β and TNF-α, and increased
levels of CITED2 chondrocytes compared to the vehicle
control (p < 0.05 for all), at a comparable level to that of
non-encapsulated curcumin-treated chondrocytes, based
on the equivalent concentration of curcumin, in the
absence or presence of IL-1β (p > 0.05 for all, Fig. 3). No
significant effects of curcumin nanoparticles on expression
of collagen 2a1 and aggrecan were observed (p > 0.05)
(Fig. 3).

Fig. 2 Oral administration of curcumin slowed progression of post-traumatic osteoarthritis in mice. Mice with destabilization of the medial meniscus
(DMM) were treated daily with curcumin (Cur) or vehicle via oral gavage. Mice with DMM treated with curcumin exhibited improved Safranin O
staining (a), lower Osteoarthritis Research Society International (OARSI) scores (b), and reduced synovitis (c) and subchondral plate thickness (d) at
8 weeks following surgery, compared to mice with DMM that were treated with vehicle (Veh). *P < 0.05, t test, n = 8/group. Representative histologic
images are shown
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Topical curcumin nanoparticles localize and are effective
in the infrapatellar fat pad (IPFP)
To test whether local, topical application of curcu-
min nanoparticles would exert increased efficacy in
treating OA, we first determined whether curcumin
nanoparticles could penetrate into the joint tissues
following topical application to the mouse knee. Cur-
cumin was detected in the IPFP at 3 hours following
topical application as shown in Fig. 4a, but was not
detected in the articular cartilage or other joint tis-
sues, or at 6 or 24 hours following topical applica-
tion (not shown), using confocal microscopy based
on the auto-fluorescence of curcumin [40]. As curcu-
min was localized within the IPFP, we next examined
the effect of curcumin nanoparticle topical treatment
on the gene expression profile of pro-inflammatory
mediators in the IPFP, which have been shown to
have a significant impact on cartilage homeostasis
and OA [41–43]. As revealed by real-time PCR, the
treatment suppressed mRNA expression of adipokines
adipsin, leptin, adiponectin, adipo-regulatory tran-
scription factors CCAAT/enhancer binding protein
alpha (Cebpa) and peroxisome proliferator-activated
receptor gamma (Pparg), and Mmp13 and Adamts5
(p < 0.05 for all, Fig. 4b).

Topical application of curcumin nanoparticles slows
progression of OA in mice with DMM
To determine efficacy of topical application of curcumin
nanoparticles on OA disease progression, we evaluated
structural integrity of the articular cartilage after eight
weeks of daily topical curcumin treatment beginning imme-
diately following DMM in mice. Eight weeks after DMM,
the articular cartilage in the limb with DMM in the vehicle-
treated mice exhibited moderate pathological osteoarthritic
change characterized by Safranin O loss and cartilage fibril-
lation (Fig. 5a), and an average OARSI score of 5.8 ± 2.1
(Fig. 5b). In contrast, the cartilage in the limb with DMM
in mice treated with curcumin nanoparticles exhibited less
Safranin O loss and cartilage fibrillation (Fig. 5a), and the
mean OARSI score (1.8 ± 0.35) was significantly lower
compared to vehicle-treated controls (p < 0.05, Fig. 5b). In
addition, curcumin nanoparticles significantly reduced
synovitis (Fig. 5c) and subchondral plate thickness (Fig. 5d)
compared to vehicle-treated controls (p < 0.05 for both).

Topical application of curcumin nanoparticles reduced
matrix degradation markers and levels of MMP-13 and
ADAMTS5 in cartilage from mice with DMM
Immunohistochemical staining showed that topical cur-
cumin treatment strongly reduced the levels of the type

Fig. 3 Curcumin nanoparticles exert anti-catabolic and anti-inflammatory effect on gene expression of human primary chondrocytes in the absence of
IL-1β (a) and presence of IL-1β (b). Human primary chondrocytes treated with nano-encapsulated curcumin (nano-curcumin) for 6 hours
exhibited reduced mRNA levels of matrix metalloproteinase (MMP)-1, MMP-3, MMP-13, a disintegrin and metalloproteinase with thrombospondin
motifs (ADAMTS5), IL-1β, TNF-α, and increased levels of CITED2 compared to that in vehicle-treated cells, while expression of collagen 2a1 (Col2a1) and
aggrecan (Acan) remained unchanged. *P < 0.05, t test, n = 5/group
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Fig. 4 Topical application of curcumin nanoparticles on the mouse knee is localized in the infrapatellar fat pad and suppresses adipokine and
adipogenesis-related gene expression. H&E staining and confocal microscopy of the infrapatellar fat pad of mouse knee joints treated with topical
nano-encapsulated curcumin (Nano-C). Representative histologic images are shown (a). Relative mRNA expression of adipokines, adipogenesis-
related transcription regulators, matrix metalloproteinase (MMP-13), and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS5)
in the infrapatellar fat pad of curcumin nanoparticles-treated mice vs vehicle controls (b). Adp Adiponectin, Pparg peroxisome proliferator-activated
receptor gamma, Cebpa CCAAT/enhancer binding protein alpha, Veh vehicle. *P < 0.05, t test, n = 3/group. Scale bar = 50 μm

Fig. 5 Topical application of nano-encapsulated curcumin slowed the progression of OA induced by destabilization of the medial meniscus (DMM) in
mice. Mice with DMM were treated daily with topical application of curcumin nanoparticles or vehicle. Mice treated topically with curcumin nanoparticles
(Nano-C) exhibited improved Safranin O staining (a), lower Osteoarthritis Research Society International (OARSI) scores (b), and reduced synovitis (c), and
subchondral bone plate thickness (d) at 8 weeks after surgery compared to that in vehicle control (Veh) (*p< 0.05, t test, n = 5/group). Representative
histologic images are shown
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II collagen cleavage epitope (Col2 3/4 M) in mice with
DMM compared to vehicle-treated mice with DMM
(Fig. 6a). Based on the immunostaining intensities of six
randomly selected areas of the articular cartilage at
8 weeks following DMM, type II collagen cleavage was
reduced to 0.58-fold in curcumin-treated animals com-
pared to vehicle-treated controls (p < 0.05, Fig. 6a).
Immunohistochemical staining similarly showed that
curcumin nanoparticle treatment reduced the levels of
cleaved aggrecan (NITEGE) in mice with DMM com-
pared to vehicle-treated mice with DMM at 8 weeks
(Fig. 6b). At 8 weeks after DMM, the immunostaining
intensity of cleaved aggrecan in curcumin nanoparticle-
treated mice with DMM was reduced to 0.68-fold com-
pared to vehicle-treated mice (p < 0.05, Fig. 6b).
Cartilage matrix degradation is mainly mediated by

two major families of proteolytic enzymes, namely
MMPs and ADAMTS [44]. In particular, MMP-13 is the
most potent enzyme in cleaving type II collagen, the
principal form in articular cartilage, while ADAMTS5
has been shown in mice to cleave aggrecan, the major
cartilage proteoglycan [2]. We therefore examined
whether reduction of MMP-13 and ADAMTS5 could
underlie the chondroprotective effect of curcumin using
immunohistochemical analysis.
At 8 weeks following DMM, the percentage of MMP-

13-positive cells in the articular cartilage was reduced
from 63 % in vehicle-treated mice to 16 % in curcumin-

treated mice (p < 0.05, Fig. 6c). Similarly, curcumin re-
duced the percentage of ADAMTS5-positive cells from
68 % in vehicle-treated mice to 37 % (p < 0.05, Fig. 6d).
These data suggest that curcumin treatment improves
the integrity of the articular cartilage by preserving both
collagen and aggrecan components in mice with post-
traumatic OA, and that the chondroprotective effects
exerted by curcumin are mediated, at least in part, by
suppressing the predominant collagenase MMP-13 and
predominant aggrecanase ADAMTS5.

Topical curcumin nanoparticles reduce OA-related pain
The progression of OA is accompanied by secondary
clinical symptoms, most prominently pain [45, 46]. At
8 weeks following DMM, vehicle-treated mice exhibited
reductions in the threshold of response to mechanical
stimuli (p < 0.05, von Frey assay, Fig. 7a), distance
traveled (Fig. 7b), and rearing (standing on hind limbs,
Fig. 7c), compared to naïve controls (p < 0.05). Animals
topically treated with curcumin nanoparticles exhibited
reduced tactile hypersensitivity (p > 0.05, Fig. 7a), and
increased distance traveled (p > 0.05, Fig. 7b) and rearing
(p > 0.05, Fig. 7c).

Discussion
In this study we demonstrated the first evidence in vivo
to show that oral and topical curcumin administration
slows the progression of post-traumatic OA in the

Fig. 6 Topical application of curcumin nanoparticles reduced the degradation of articular cartilage matrix and reduced the expression of matrix
metalloproteinase-13 (MMP-13) and a disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMTS5). Intensity of immunohistochemical
staining of type II collagen cleavage epitope (Col2-3/4 M) (a) and cleaved aggrecan (NITEGE) (b), and percentage of positive cells of immunohistochemical
staining of MMP-13 (c), and of ADAMTS5 (d) in the articular cartilage of mice with destabilization of the medial meniscus (DMM) that were treated with
curcumin nanoparticles (N-C) for 8 weeks following surgery were significantly reduced compared to mice with DMM treated with vehicle (Veh)
(*p < 0.05, t test, n = 5/group). Scale bar = 100 μM. Representative immunohistochemical images are shown
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DMM mouse model. Specifically, we showed that oral or
topical administration of curcumin immediately after
DMM significantly slowed or delayed the initiation and
progression of OA in mice. This was indicated by less
cartilage erosion and proteoglycan loss, reduced syno-
vitis and subchondral plate thickness, reduced degrad-
ation of type II collagen and aggrecan, and lower
expression of MMP-13 and ADAMTS5 following curcu-
min treatment compared to vehicle controls. The pre-
ventative and therapeutic potential of curcumin is
extremely valuable, given about 50 % of patients who
suffer joint injuries, such as anterior cruciate ligament
tears, develop OA within 10–15 years [47], and that
there is no disease-modifying therapy for OA [48].
Furthermore, we provide the first evidence of a pallia-

tive effect of curcumin encapsulated in custom-made
nanoparticles applied topically to an osteoarthritic joint
in mice. Mice with DMM treated with curcumin nano-
particles exhibited decreased sensitivity to mechanical
stimuli and increased locomotor behavior (i.e., distance
traveled and rearing) compared to vehicle-treated mice,
suggesting an improvement in OA-related pain. The
results are consistent with a recently randomized,
double-blind, placebo-controlled trial, in which patients
with OA receiving a curcuminoid had significantly lower
scores on the Western Ontario and McMaster Univer-
sities Osteoarthritis Index (WOMAC) and Lequesne’s pain
functional index than patients receiving a placebo [23].
There is currently no cure for OA or a therapeutic

agent with proven evidence to slow or halt the progres-
sion of OA [49]. Treatments used to temporarily relieve
pain in OA, such as NSAIDs, may also cause severe
gastrointestinal, renal, and cardiovascular side effects
after long-term use [49–51]. In addition, patients experi-
encing pain relief without a concurrent improvement in
the disease itself may become less conscientious about
protecting their diseased joints (such as by avoiding over-
use), and may unknowingly exacerbate the progression of

OA. On the other hand, an OA drug that halts the pro-
gression of OA but does not relieve OA-related pain may
not be effective, as patient compliance would likely be
low. Upon further validation in other animal models and
clinical trials, the effects of curcumin in both disease and
symptom modification make it an attractive potential
therapeutic agent for OA.
While the etiologic and pathogenic mechanisms for

both initiation and progression of OA are not clear, in-
flammation, over-activated catabolic activity and oxida-
tive stress responses are considered to be common in
both processes [2, 44, 52, 53]. The effects of curcumin
on attenuating inflammation, formation of reactive oxy-
gen species, and catabolic activity have been suggested
in chondrocytes in vitro [7, 14–16, 18, 19], in human
synovial fibroblasts and in collagen-induced arthritis in
mouse models [7, 14–16, 18, 19]. Furthermore, Colitti et
al have shown an anti-inflammatory effect of curcumin on
the gene expression of peripheral white blood cells in dogs
with OA [16]. Consistent with these studies, we demon-
strated that curcumin, in both the non-encapsulated
(Fig. 1) and encapsulated forms (Fig. 3) exerts broad chon-
droprotective effects in human primary chondrocytes by
suppressing the expression of genes encoding inflamma-
tory cytokines IL-1β and TNF-α, and cartilage-degrading
enzymes from the MMP family, including MMP-1, MMP-
3, and MMP-13. We also demonstrated for the first time
that curcumin suppresses expression of aggrecanase
ADAMTS5, a key proteinase in cartilage destruction dur-
ing OA that primarily cleaves the aggrecan components of
the cartilage extracellular matrix [54–56]. Curcumin also
induces gene expression of CITED2, an MMP-repressing
transcriptional regulator. We previously demonstrated
that CITED2, in response to moderate mechanical load-
ing, represses expression of MMP-1 and MMP-13 in vitro
[57] and in vivo [26]. NF-kB is a key factor that triggers
the expression of various genes implicated in cartilage
destruction, synovial membrane inflammation, and bone

Fig. 7 Topical application of curcumin nanoparticles reduces osteoarthritis-related pain symptoms. Tactile sensitivity (von Frey testing) (a), and
distance traveled (b) and number of times reared (c) per 6 minutes in an open field, in mice with destabilization of the medial meniscus (DMM)
treated with curcumin nanoparticles (Nano-C) at 8 weeks after DMM surgery, did not differ from naïve controls (#p > 0.05, one-way analysis of
variance (ANOVA) with Tukey post-hoc test, n = 5/group), but had significant improvement compared to mice with DMM treated with vehicle
(Veh) (*p < 0.05, one-way ANOVA with Tukey post-hoc test, n = 5/group)
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resorption [58, 59]. As CITED2 may negatively regulate
NF-kB activity in embryonic kidney cells [60], curcumin
may exert its chondroprotective effects by suppressing
NF-kB activity by upregulating CITED2.
It has been reported that curcumin is barely soluble in

water and poor absorption is attained from the epithelial
cells in the gastrointestinal tract. Rats given an oral dose
of curcumin excreted 75 % in the feces unchanged, with
less than 0.02 % recovered from the liver, kidney, and
body fat [61]. However, several studies analyzing plasma
levels of curcumin or its metabolites have detected cur-
cumin, although only small amounts, following relatively
high doses of oral administration in humans [62, 63]. In
this study, we demonstrated that oral administration of
curcumin exerted efficacy in slowing the progression of
post-traumatic OA. However, a palliative effect was not
observed in mice with OA induced by DMM when cur-
cumin was administrated orally in this study. The data
suggest orally delivered curcumin is unlikely to reach
biologically/pharmacologically active concentrations in
the serum, synovial fluid, or joint tissues, that are suffi-
cient to mitigate OA-related pain [4]. Together, our ob-
servation further indicates that relieving pain and its
symptoms may require higher levels of curcumin com-
pared to those required for disease modification.
As topical administration is a patient-friendly drug de-

livery method in OA treatment, we examined the efficacy
of topical administration of nanoparticles encapsulating
curcumin in OA disease modification and symptom im-
provement in mice with OA induced by DMM. Topical
application of curcumin nanoparticles was efficacious not
only in OA disease modification (Fig. 5), but also in reliev-
ing OA-related pain (Fig. 7). The data indicate that the
topical application of curcumin encapsulated within
nanoparticles preserves the chondroprotective activity of
curcumin, and may increase its bioavailability.
Pathological changes in DMM-induced OA, including

cartilage destruction, synovitis, and subchondral bone
thickening, are observed in human OA [32]. Our study
shows that curcumin treatment via oral (Fig. 2) or topical
administration (Fig. 5) significantly improved OA-related
pathological changes in the synovium and subchondral
bone, indicating that curcumin has comprehensive poten-
tial for the treatment of joint tissues in OA [2].
The IPFP is an adipose tissue located within the knee

joint synovial capsule, which may contribute to low-
grade inflammation and cartilage degeneration through
the secretion of adipokines and pro-inflammatory
mediators into the synovial joint [64, 65]. In this study,
we demonstrated that topically applied curcumin was
largely localized in the infrapatellar fat pad (Fig. 4a). We
further demonstrated that this treatment led to reduced
expression of adipokines and pro-inflammatory media-
tors in the fat pad (Fig. 4b). These data suggest

curcumin may slow the disease progression in OA, at
least in part, by mitigating the pro-inflammatory mediat-
ing effect of the IPFP on cartilage and articular joints.
In this study, we provide the first evidence to demon-

strate the efficacy of curcumin in OA disease and symp-
tom modification using a post-traumatic OA mouse
model. In addition to traumatic joint injuries, other con-
ditions such as mechanical overuse and aging are risk
factors for OA [66, 67]. Evaluating the efficacy of curcu-
min in other relevant OA models such as overuse-
induced OA and spontaneous OA, which represents
age-related OA, will be of interest.

Conclusions
Using a post-traumatic OA mouse model, we provide
the first evidence that curcumin has significant efficacy
in slowing OA disease progression and a substantial ef-
fect on pain relief. Curcumin may exert its efficacy by
regulating a broad spectrum of molecules including pre-
dominant proteinases in cartilage breakdown such as
collagenase MMP-13, and aggrecanase ADAMTS5 in
chondrocytes. The chondroprotective effects of curcu-
min, when administered topically, act through, at least
in part, the suppression of relevant adipokines and other
pro-inflammatory mediators that are critical for cartilage
homeostasis in the infrapatellar fat pad.

Additional file

Additional file 1: Figure S1. Non-encapsulated curcumin reduces
MMP-13 mRNA expression in a dose-and time-dependent manner. Hu-
man primary chondrocytes were treated with curcumin at indicated con-
centrations (0–200 μM) for 6 hours (A) or treated with curcumin at 100 μM
at different durations (0–48 hours) (B) in the presence of IL-1β.
*P <0.05, t test or one-way ANOVA with Tukey post-hoc test, n = 3/group.
(DOCX 116 kb)
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