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Retinitis pigmentosa (RP) is an inherited retinal dystrophy characterized by progressive
degeneration of the visual cells and abnormalities in retinal pigment epithelium, the
vision is lost slowly, and the final outcome is total blindness. RP primarily affects rods,
but cones can also be affected as a secondary effect. Photoreceptor cell death is
usually triggered by apoptosis, however the molecular mechanisms linking the rod
degeneration to the secondary cone death are poorly understood. Possible causes of
the secondary cone death are oxidative stress and/ or the release of toxic factors from
dying rods. The aim of this study is to analyze the effect of nutraceutical molecules
with antioxidant properties, on the progression of the disease in an established animal
model of RP, and rd10 mice. We show that chronic treatment per os with a flavanone
(naringenin) or a flavonol (quercetin) present in citrus fruits, grapes and apples, preserves
retinal morphology, and ameliorates functionality. These actions are associated with
a significant reduction of stress-oxidative markers, such as the detoxifying enzymes
Sod1 and Sod2. In addition, naringenin and quercetin treatment reduces the levels of
acrolein staining associated with a reduction of ROS in the cellular environment. The
study demonstrates the beneficial effects of naringenin and quercetin, two molecules
that possess antioxidant properties, limiting neurodegeneration, and thus preventing
cone damage.

Keywords: retinitis pigmentosa, photoreceptors, retinal degeneration, oxidative stress, nutraceutical treatment

INTRODUCTION

Retinitis pigmentosa (RP) is a group of inherited retinal diseases in which a mutation causes the
death of rod photoreceptors. As a consequence, scotopic vision is impaired and the visual field is
reduced as compared to healthy subjects (Wang et al., 2005). Subsequently, cones gradually die, and
daily vision is lost. RP-associated genes are mainly expressed in rods and play a critical role in rod

Abbreviations: BSA, bovine serum albumin; ERG, electroretinogram; GCs, ganglion cells; INL, inner nuclear layer;
IPL, inner plexiform layer; ONL, outer nuclear layer; OPL, outer plexiform layer; OS, outer photoreceptor segments;
PBS, phosphate buffered saline; ROS, superoxide radicals; RP, retinitis pigmentosa; Sod, superoxide dismutase; TBS,
Tris–buffered saline.
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function and survival. In humans and in the animal models
of this disease, such as rd1 (Lin et al., 2009) and rd10 mice
(Gargini et al., 2007) cone photoreceptors are spared as long as a
significant fraction of rod survives, suggesting a link between rod
survival, and cone degeneration (Piano et al., 2013). Thus, while
genetic mutations are the primary cause of the rod degeneration,
cone death is possibly the consequence of the release of toxic
substances, either released by a dying rod into the retinal milieu,
or diffused to coupled cones through gap junctions (Ripps, 2002).
Additionally, the lack of factors secreted by rods that are essential
to the cone viability may lead to cone death (Roque et al.,
1996). Furthermore, it has been suggested that the migration
of microglial cells into the outer retina could contribute to
photoreceptor degeneration in RP (Leveillard et al., 2004; Peng
et al., 2014). Other evidence suggests that an upregulation of
genes implicated in cellular metabolism may occur at various
stages of the disease. As an example, the upregulation of the genes
involved in the insulin/mTOR pathway supports the notion that
metabolic stress is a contributing factor to the secondary death
of cones (Punzo et al., 2009; Venkatesh et al., 2015). Emerging
studies show that all these factors contribute to making cones
in RD retinas much more sensitive to oxidative stress than their
counterpart in healthy retinas, thus triggering processes of cell
death (Campochiaro and Mir, 2018).

Oxidative stress involves the generation of free radicals which
are inherently unstable, leading to oxidization of molecules in
the local environment. Small amounts of ROS, generated by
NADPH oxidase inside the cytoplasm, or by oxygen-electron
donor mismatches present in mitochondria, are neutralized by
glutathione and superoxide dismutase family enzymes (Sod).
However, under pathological conditions, such as high tissue
levels of oxygen or other sources of free radical generators, the
antioxidant system may be insufficient to clear the environment
from ROS, leading to the production of radicals even more
harmful to the cell such as hydroxyl radicals. When free
radicals encounter macromolecules, they produce characteristic
modifications that compromise lipids, proteins, and DNA
constituting oxidative damage (Campochiaro and Mir, 2018).

In the mouse retina, rods constitute 97.2% of the cells in the
ONL and they are packed with mitochondria making them highly
metabolically active (Jeon et al., 1998). As a result of rod death,
the levels of oxygen consumption dramatically drop, leading
to an increased oxidative stress that, in a second phase of the
pathology, and contributes to the death of cones. The hypothesis
that oxidative stress is the initial cause of cone degeneration
is also supported by previous studies showing that the use of
the anti-oxidant mixture is effective in slowing cones death
down in different RP models, including rd1, Q344ter, rd10 mice
(Komeima et al., 2007, 2008; Oveson et al., 2011), and P23H rats
(Fernandez-Sanchez et al., 2012).

Here we show that two flavonoids present in a typical
Western diet are effective in preventing the death of the cone
photoreceptors in the animal model of RP, rd10 mice. These
are quercetin, one of the most often studied dietary flavonoids
present in various vegetables, tea, and red wine (D’Andrea,
2015) which interacts with misfolded rhodopsin molecules
(Herrera-Hernandez et al., 2017) and naringenin, a bioflavonoid

compound present in high concentrations in the Citrus species
(Viswanatha et al., 2017).

MATERIALS AND METHODS

Animals
rd10 mice were used as model of retinal neurodegeneration.
These mice carry a homozygous phosphodiesterase 6b mutation
(Pde6brd10/rd10) on a C57Bl/6J background. Progressive rod,
and then cone, photoreceptors degeneration in homozygous
rd10 mice begins at postnatal day (P)18 and completes at day
60 (Gargini et al., 2007). Mice were kept at a constant room
temperature with a light/dark cycle of 12 h with illumination
levels below 60 lux. Animals were treated in accordance
with Italian and European institutional guidelines, following
experimental protocols approved by the Italian Ministry
of Health (Protocol #DGSAF0001996/2014, Department of
Pharmacy, University of Pisa, Pisa, Italy) and by the Ethical
Committees of University of Pisa. For all experiments the animals
were deeply anesthetized by an intraperitoneal injection of
Urethane 20% in a saline buffer (0.9% NaCl) at dose of 0.1 ml/10 g
and then killed by cervical dislocation under deep anesthesia.
Age-matched C57Bl/6J mice were used as a wild type (wt) control.

Nutraceutical Treatments
rd10 mice were used in a range of ages from P18 (when they
are able to drink on their own) to P45 (peak of death of cone
photoreceptors). Stock solutions of naringenin and quercetin
were prepared in DMSO and added to their drinking water,
resulting in a dose of 100 mg/kg/die per animal (Alam et al.,
2013; Testai et al., 2013; Viswanatha et al., 2017). The water intake
per mouse was measured daily to ensure each animal received
the administered dose. The animals were randomly divided into
three treatment groups as follows: (1) the vehicle group (n = 6)
which received the same percentage of vehicle present in the
water of the other groups (0,025% DMSO per os); (2) naringenin
group (n = 6) which received 100 mg/kg/die; and (3) quercetin
group (n = 6) treated with 100 mg/kg/die.

Electroretinogram
The general procedure for animal preparation, anesthesia, ERG
recording, light stimulation, and data analysis has been described
in detail previously (Della Santina et al., 2012). ERGs were
recorded in complete darkness via coiled gold electrodes making
contact with the moist cornea. A small gold needle placed in
the scalp served as both the reference and ground. Responses
were amplified differentially, band-pass filtered at 0.1–500 Hz,
digitized at 12.8 kHz by a computer interface (LabVIEW 6.1;
National Instruments, Austin, TX, United States) and stored
on a disk for processing. Light stimuli were delivered into
a Ganzfeld sphere of 30 cm in diameter, with the internal
surface coated with highly reactive white paint, to ensure
uniform illumination of the whole retinal surface. For the flash
stimulation protocol, an electronic flash unit (Sunpak B3600
DX, Tocad Ltd, Tokyo, Japan) delivered flashes of white light,
the energy of which decayed with a t of 1.7 ms. Calibrated
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neutral density filters were used to attenuate the intensity of
the flashes. Mice were subjected to scotopic and photopic ERG
recordings. For scotopic ERG recordings, mice were subjected
to different flash intensities (ranging from 1.71 × 10−5 to
377.2 cd∗s/m2 in steps of 0.6 log units), each repeated five times,
with an inter-stimulus interval that ranged from 20 s for dim
flashes to 1 min for the brightest flashes. Five ERG traces at
each flash luminance were averaged before measurements of
b-wave amplitudes. Isolated cone components were obtained
by superimposing the test flashes of eight different intensities
(ranging from 0.016 to 377.2 cd∗s/m2) on a steady rod-saturating
background (30 cd/m2) after at least 15 min from background
onset. Each light stimulus was repeated five times, with an
inter-stimulus interval that ranged from 20 s for dim flashes
to 1 min for the brightest flashes. Five ERG traces at each
flash luminance were averaged before measurements of b-wave
amplitudes and were analyzed offline using custom-compiled
programs developed by LabView 7 (National Instruments).

Western Blot
Retinas from C57Bl/6J and rd10 mice were lysed in modified
RIPA buffer as described by Piano et al. (2013) and protein
was quantified with the Bradford assay (Bio-Rad). For every
experiment performed, three different samples from each
experimental group were loaded on the gel, each from an
animal previously used for ERG recordings. Proteins (25 µg)
were separated onto a pre-cast 4–20% polyacrylamide gel (Mini-
PROTEAN R© TGX gel, Bio-Rad) and transferred to PVDF
membranes (Trans-Blot R© TurboTM PVDF Transfer packs, Bio-
Rad). Membranes were blocked with 5% BSA diluted in Tris–
buffered saline (TBS, 20 mM Tris–HCl, PH 7.5, 150 mM NaCl)
with 0.1% Tween 20. Primary antibodies (Table 1) were incubated
overnight at 4◦C. After 3 × 10 min wash in T-TBS (TBS
buffer with 0.1% of Tween-20), membranes were incubated with
secondary antibodies (Table 1) for 2 h at room temperature.
The immunoblot signal was visualized using an enhanced
chemiluminescence substrate detection system (LuminataTM

Forte Western HRP Substrate, Millipore). The chemiluminescent
images were acquired by LAS4010 (GE Healthcare Life-Sciences,

TABLE 1 | List of antibodies.

Antibody Company Work
dilution

Application

Actin Merck Millipore 1:5000 WB

ATP5a AbCam 1:500 WB

Cone-opsin R/G Santa Cruz 1:1000 WB

Cone-opsin B Santa Cruz 1:1000 WB

Sod1 Sigma Aldrich 1:500 WB

Sod2 Sigma Aldrich 1:500 WB

Anti-mouse IgG
HRP conjugated

Merck Millipore 1:5000 WB

Anti-rabbit IgG HRP
conjugated

Cell Signaling Technology 1:5000 WB

WB, western blot analysis.

Pittsburgh, PA, United States). Densitometry was undertaken
using ImageJ software.

Each protein of interest to the study was normalized for the
content of a specific reference protein (β-actin or ATP5a). The
reference protein was measured on the same membrane after a
stripping procedure performed with three washes of 10 min each
in glycine buffer pH 2, followed by three washes in T-TBS and
blocking in 5% BSA. The incubation of primary and secondary
antibodies (Table 1) was performed with the same protocol
described above.

Immunohistochemistry
The survival rate of the cone and the lipid peroxidation,
as an indication of oxidative stress, were examined
immunohistochemically. Frozen retinal sections (14 µm)
were washed 3 × 10 min, in PBS, then incubated for 45 min
in blocking solution (1% BSA, 0.3% Triton-X100 in PBS).
Sections were then incubated with anti-cone arrestin antibody
(1:5000, Merck Millipore) or anti-acrolein antibody (1:1000,
AbCam) overnight at 4◦C. After being washed 3 × 10 min in
PBS, sections were incubated with the secondary antibody (goat
anti-rabbit Alexa Fluor R© 488, Molecular Probe) for 2 h at room
temperature. Sections were then washed 3 × 10 min in PBS
and then incubated with a solution of ethidium homodimer
diluted in PBS (1:5000, Sigma-Aldrich) for 5 min and washed
once with PBS. Finally, slides were covered with a mounting
medium (Vectashild R©). Images were obtained with a Leica
TCS-SP5 confocal microscope, using a 20× and 40× oil objective
(0.75 and 1.45 NA, respectively) and a pinhole size of <1.0 µm.
Scanning fields were 250 µm × 250 µm × 10 µm. Saved
files were extended focus images obtained automatically by
superposition of the five focal planes.

Statistical Analysis
Statistical comparisons for ERG and western blot analysis were
performed with analysis of variance (ANOVA) one-way or two-
way test followed by Bonferroni-corrected t-test using Origin Lab
8.0 software (Microcal, Northampton, MA, United States).

RESULTS

Functional and Morphological Retinal
Recovery in rd10 Mice After
Nutraceutical Treatment
The results in this study show that chronic oral treatment
with molecules of natural origin slows down the loss of
functionality of the cone pathway and is effective in maintaining
the morphological structure of these photoreceptors. However,
the treatment fails to maintain any ERG response to the
scotopic light stimuli (data not shown). Conversely the photopic
b-wave is maintained in treated mice, as shown in Figure 1.
Figure 1A shows the ERG response of the three treatment
groups, the b-wave amplitude is plotted for the response
to photopic flashes of different intensities in the control
(only vehicle treatment) and test animals (animals treated
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FIGURE 1 | Naringenin and quercetin slow down the decline of photoreceptor function in rd10 mice. Photopic ERGs were performed at P45. (A) Sensitive curve of
amplitude of photopic ERG response in function of increase intensity of light stimulus. (B) Histograms represent the maximum b-wave amplitude in response to the
brightest flash. The bars are expressed as average ± SEM. (C) Histograms represent the implicit time of the maximum amplitude in response to the brightest flash.
The dots are expressed as average ± SEM. Statistical analysis is one-way ANOVA followed by Bonferroni’s multiple comparison test (∗p ≤ 0.05; ∗∗p ≤ 0.01).
Number of animals for each treatment group is n = 6.

for 27 days with two different natural molecules belonging
to the flavonoid family). The b-wave amplitude recorded
from the animals of both treatment groups (naringenin and
quercetin) shows a significant increase compared to the control
group (∗∗p = 0.007; ∗∗p = 0.01, respectively). In addition,
the kinetics of ERG responses to the brightest stimulus, are
faster in the animals treated with either one of the two
molecules compared to the control (∗p = 0.045; ∗p = 0.014,
respectively) (Figures 1B,C). Furthermore, the prolonged
treatment up to P60 with naringenin shows persistence improved
photopic ERG responses, which are otherwise almost extinct
in the animals treated with the vehicle alone (Supplementary
Figure 1). Although the functional response in mice treated
with nutraceutical molecules is significantly increased compared
to rd10 treated with vehicle, responses do not reach the
levels of the wt mice, indicating only a partial recovery
(Supplementary Figures 2C–E).

To assess whether the observed recovery of retinal function
is due to an increased cone survival, we performed the
quantification of both cone-opsins (middle-wavelength and

short-wavelength cone opsins) by western blot, in order
to assess the total content of these proteins (Figure 2).
Figure 2A shows that despite cone-opsin protein levels being
reduced in all rd10 groups compared to the wt control
group (∗∗∗p < 0.001) there is a significant increase in cone-
opsins protein content after chronic treatment with natural
molecules compared to rd10 mice treated with vehicle alone
(∗∗∗p < 0.001). Moreover, the immunohistochemistry for cone-
arrestin (Figure 3, green staining) shows that the retinas
taken from the animals treated with naringenin or quercetin,
present a complete cone layer in the ONL, while in the
retinas of animals treated with the vehicle alone, only a
sporadic and delocalized label is observed, indicating the
progressive degeneration of the cone. Figure 3 shows that
preservation of an intact morphological structure (including
outer/inner photoreceptor segments (OS/IS) and terminal
pedicle) similar to wt cones (Supplementary Figure 2A)
is achieved in some but not all cones. The remaining
cone photoreceptors have an OS only partially preserved
and their nuclei are in a pre-apoptotic phase (bright red

FIGURE 2 | Naringenin and quercetin reduce the loss of cone after 27 days of treatment in rd10 mice. (A) Relative intensity of total cone-opsins (R/G + B)
immunoreactive band quantified by densitometry scanning. Asterisks indicate significance (∗∗∗p < 0.001) by two-way ANOVA followed by pair-wise t-test
comparison with Bonferroni’s correction (n = 4 for wt C57Bl/6J mice and n = 6 for each treatment group). (B) Scanning image to representative immunoblots.
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FIGURE 3 | Morphological effects of chronic treatment with naringenin and quercetin on the outer retina. Immunohistochemistry for cones (cone-arrestin in green)
and nuclear layers (Ethidium bromide in red). Cone-arrestin staining revealed the protective effect of chronic treatment of both nutraceutical compounds on
degeneration of cone photoreceptors. OS, outer photoreceptor segments; ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner
plexiform layer; GCs, ganglion cells; ∗, pyknotic nuclei.

of ethidium). These morphological alterations can be the
structural correlate of the recovered, but still below wt level,
light responses measured by ERG in mice treated with
nutraceutical molecules.

Naringenin and Quercetin Are Effective
in Reducing Oxidative Stress in the
Cellular Environment
After observing an improvement in both functional
response and retinal morphology in animals treated
with naringenin or quercetin, we went on to evaluate
the influence of nutraceutical treatments on the levels
of oxidative stress in the cellular environment. The
flavonoids could interact both with the enzymatic systems
of cellular detoxification and through a scavenger’s action
(Al-Dosari et al., 2017).

In order to understand if the nutraceutical treatment is able
to induce a detoxifying response we evaluated the protein levels
of Sod1 (cytosolic enzyme) and Sod2 (mitochondrial enzyme)
that represent a major system of ROS detox of the internal
milieu, by western blot analysis (Figure 4). Figure 4A shows a
significant reduction of Sod1 expression levels in the naringenin-
treated group and in the quercetin-treated group compared
with the control group (∗∗p = 0.008; ∗∗p = 0.003, respectively).
In Figure 4C, the expression levels of Sod2 are significantly
reduced in both groups of treated animals (naringenin and
quercetin) compared to the group treated with the vehicle
alone (∗p = 0.037; ∗p = 0.021, respectively). Furthermore,
it is possible to note that, as a result of both treatments
performed, and for both proteins evaluated (Figures 4A,C),
there is a return to the physiological conditions found in the

age-matched wt animals (∗∗p = 0.01 wt vs. rd10 untreated).
These results indicate that ROS detoxification systems are
reduced after nutraceutical treatment, probably because of a
scavenger action of the flavonoids or a reduction of ROS
production levels.

To evaluate if the nutraceutical treatment induces a reduction
of ROS in the retina, we used a lipid peroxidation marker,
acrolein, and index of ROS levels that binds lipids of cell
membranes (Komeima et al., 2006). Figure 5 shows how
the marking for acrolein (green staining) is highly visible in
the retinal sections obtained from animals treated with the
vehicle while the green staining is reduced in the retinal
sections obtained from both treatment groups returning to the
physiological condition present in the age-matched wt animals
(Supplementary Figure 2B) suggesting a direct action of the two
molecules as a scavenger.

DISCUSSION

A previous study conducted in our laboratory has shown
that function and morphology of cones, in rd10 mice aged
P45, are altered with respect to the wt animals of the
same age (Piano et al., 2013) and other works have shown
the predominant role of oxidative stress in the secondary
death of cone-photoreceptors, following the primary death
(mutation-dependent) of rod, in several RP models (Shen
et al., 2005; Komeima et al., 2006). Further studies, conducted
in several animal models of RP, have confirmed the strong
involvement of oxidative stress in the degeneration of the
cone. These studies have also shown how different therapeutic
approaches, that target oxidative stress, are effective in slowing
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FIGURE 4 | Chronic treatment with naringenin and quercetin significantly reduces the expression levels of anti-oxidant enzymes. (A,C) Relative intensity of Sod1 and
Sod2 immunoreactive bands quantified by densitometry scanning, respectively (n = 3 for wt C57Bl/6J mice and n = 5 for each treatment group). Asterisks indicate
significance (∗p ≤ 0.05; ∗∗p ≤ 0.01) by one-way ANOVA with Bonferroni’s multiple comparison test. (B,D) Representative immunoblots of Sod1 and Sod2,
respectively.

FIGURE 5 | Lipid peroxidation in rd10 mouse retina. Immunolabeling of acrolein (green staining), a toxic product formed during lipid peroxidation and used as a
marker of oxidative stress, is reduced after treatment with naringenin or quercetin for 27 days as compared with control. ONL, outer nuclear layer; OPL, outer
plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer; GCs, ganglion cells.

the progressive degeneration of the cone photoreceptors
(Assimopoulou et al., 2005; Shen et al., 2005; Komeima
et al., 2006, 2007, 2008; Kanakis et al., 2007; Fernandez-
Sanchez et al., 2012; Xiong et al., 2015; Wang et al., 2016;
Trouillet et al., 2018).

In the present study, we tested a novel therapeutic strategy
using two flavonoids, naringenin and quercetin, to limit the
oxidative stress underlying the RP. Indeed, these flavonoids
exhibit anti-oxidant properties interacting with enzymatic system
of cellular detoxification through a scavenger’s action (Al-Dosari
et al., 2017). Furthermore, it has been demonstrated that the
anti-oxidant and anti-apoptotic effects of flavonoids may limit

neurodegeneration by providing neurotrophic support to prevent
retinal damage in RP like in other kind of retinal disorders such
as diabetic retinopathy (Al-Dosari et al., 2017) and Age-Related
Macular Degeneration (Gopinath et al., 2018).

Our results confirm, and extend, the previous data published
by other groups on the fundamental role of the increase of
the oxidative stress in the death of cone photoreceptors and
the beneficial effects of anti-oxidant molecules in slowing the
degeneration of cone (Assimopoulou et al., 2005; Shen et al.,
2005; Komeima et al., 2006, 2007, 2008; Kanakis et al., 2007;
Fernandez-Sanchez et al., 2012; Xiong et al., 2015; Wang et al.,
2016; Trouillet et al., 2018). In particular, we observed that a
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chronic non-invasive treatment with molecules of natural origin,
frequently present in normal daily diets, can significantly slow
down the progression of the disease. This reduction of oxidative
damage resulted in increased survival of cone photoreceptors
at P45, proving that oxidative damage contributes to cone cell
death in the rd10 mouse model of RP. For instance, it has also
been reported that over-expression of Sod1 and 2 may cause
an aggravation of the oxidative damage and precipitate cone
death in different RP models (Usui et al., 2009, 2011). The
hypothesis that both nutraceutical compounds could slow down
the cone degeneration is also supported by the demonstration
that antioxidant-treated rd10 mice had a significant increase in
ERG photopic b-wave amplitude and a reduction of implicit time,
at P45 compared to vehicle-treated mice.

The importance of the detoxifying enzymes Sod1 and Sod2 has
already been demonstrated in the rd10 mouse model of RP (Usui
et al., 2011). Surprisingly, oral treatment, started at P18, with two
molecules belonging to the flavonoid family, does not seem to
interact with ROS detoxification systems, since the protein levels
of Sod1 and Sod2 were lower than in the control group (vehicle
alone). Therefore, our data suggest that naringenin and quercetin
are able to interfere with the decrease of ROS levels in the cellular
environment, through a different pathway.

As a consequence of the rod death, the oxygen consumption
is reduced since the choroidal vessels are incapable of
autoregulation and continue to provide the same blood flow,
leading to an increase in the oxygen radical species, which in
being highly reactive, attack the cellular structures (proteins,
lipids, and nucleic acids) (Campochiaro and Mir, 2018). In
particular, when free radicals attack double bonds in lipids they
generate acrolein, 4-hydroxynonenal, and its presence indicates
that lipid peroxidation has occurred, and the measurement of
their levels provides a quantitative assessment of the amount of
damage (Benedetti et al., 1980; Esterbauer and Cheeseman, 1990;
Esterbauer et al., 1991).

The data obtained by acrolein stained in the retinal sections
from naringenin and quercetin treated-mice show how this
specific marker of oxidative stress is almost completely absent
compared to the animals treated with the vehicle alone.
This result demonstrates that the chronic treatment with
nutraceutical molecules is sufficient to reduce the ROS levels
in the cellular environment. This effect could be due to a
direct action between flavonoids and ROS or it could be
due to an improvement of the cellular metabolic conditions
(for example a better efficiency of cellular respiration at the
mitochondria level) which leads to an upstream reduction in the
production of ROS. Therefore, further experiments are required
to deepen this aspect as a logical continuation of the ongoing
research on this topic.

The anti-oxidant and anti-apoptotic effects of flavonoids may
limit neurodegeneration by providing neurotrophic support to

prevent retinal damage in RP like in other kind of retinal
pathologies such as diabetic retinopathy (Al-Dosari et al., 2017).

Overall, in this paper we used the rd10 mouse model of RP
for the first time, to test the potential beneficial effects of two
nutraceutical compounds, naringenin and quercetin, present in
a typical western diet by a chronic non-invasive treatment.

In conclusion, our results demonstrate that a supplemental
daily diet with sufficient doses of flavonoids could be an
effective, mutation-independent and non-invasive approach, to
slow retinal degeneration. Further validation of this approach
requires additional work to estimate the actual effectiveness of
the treatment for vision and to establish the optimized regimen
of exogenous antioxidant molecules.
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